16 research outputs found

    Modeling and simulations of beam stabilization in edge-emitting broad area semiconductor devices

    Get PDF
    A 2+1 dimensional PDE traveling wave model describing spatial-lateral dynamics of edge-emitting broad area semiconductor devices is considered. A numerical scheme based on a split-step Fourier method is presented and implemented on a parallel compute cluster. Simulations of the model equations are used for optimizing of existing devices with respect to the emitted beam quality, as well as for creating and testing of novel device design concept

    Modeling and Simulations of Beam Stabilization in Edge-Emitting Broad Area Semiconductor Devices

    No full text
    A 2+1 dimensional PDE traveling wave model describing spatial-lateral dynamics of edge-emitting broad area semiconductor devices is considered. A numerical scheme based on a split-step Fourier method is presented and implemented on a parallel compute cluster. Simulations of the model equations are used for optimizing of existing devices with respect to the emitted beam quality, as well as for creating and testing of novel device design concepts

    Analysis of Lift Losses for a Round Planform with a Central Jet

    No full text

    Kinetic energy harvesting

    No full text
    This chapter introduces principles of normal kinetic energy harvesting and adaptive kinetic energy harvesting. Kinetic energy harvesters, also known as vibration power generators, are typically, although not exclusively, inertial spring-mass systems. Electrical power is extracted by employing one or a combination of different transduction mechanisms. Main transduction mechanisms are piezoelectric, electromagnetic and electrostatic. As most vibration power generators are resonant systems, they generate maximum power when the resonant frequency of the generator matches ambient vibration frequency. Any difference between these two frequencies can result in a significant decrease in generated power. Recent development in adaptive kinetic energy harvesting increases the operating frequency range of such generators. Possible solutions include tuning resonant frequency of the generator and widening the bandwidth of the generator. In this chapter, principles and operating strategies for adaptive kinetic energy harvesters will be presented and compared
    corecore